Variance Propagation for Density Surface Models

نویسندگان

چکیده

Abstract Spatially explicit estimates of population density, together with appropriate uncertainty, are required in many management contexts. Density surface models (DSMs) a two-stage approach for estimating spatially varying density from distance sampling data. First, detection probabilities—perhaps depending on covariates—are estimated based details individual encounters; next, local densities using GAM, by fitting encounter rates to location and/or covariates while allowing the detectabilities. One criticism DSMs has been that uncertainty two stages is not usually propagated correctly into final variance estimates. We show how reformulate DSM so probability stage (regardless its complexity) captured as an extra random effect GAM stage. In effect, we refit approximation function model at same time spatial model. This allows straightforward computation overall via exactly software already needed fit GAM. A further extension variation group size, which can be important covariate detectability well directly affecting abundance. illustrate these point transect survey data Island Scrub-Jays Santa Cruz Island, CA, and harbour porpoise SCANS-II line European waters. Supplementary materials accompanying this paper appear on-line.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density propagation for surface tracking

This paper describes a novel approach to surface tracking in volumetric image stacks. It draws on a statistical model of the uncertainties inherent in the characterisation of feature contours to compute an evidential field for putative inter-frame displacements. This field is computed using Gaussian density kernels which are parameterised in terms of the variance–covariance matrices for contour...

متن کامل

Propagation Models and Fitting Them for the Boolean Random Sets

In order to study the relationship between random Boolean sets and some explanatory variables, this paper introduces a Propagation model. This model can be applied when corresponding Poisson process of the Boolean model is related to explanatory variables and the random grains are not affected by these variables. An approximation for the likelihood is used to find pseudo-maximum likelihood esti...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Estimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models

The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...

متن کامل

Propagation Models for Wimax

Worldwide Interoperability for Microwave Access (WiMAX) is the latest broadband wireless technology for terrestrial broadcast services in Metropolitan Area Networks (MANs). WiMAX has potential success in its line-ofsight (LOS) and non line-of-sight (NLOS) conditions which operating below 11 GHz frequency. Estimation of path loss is very important in initial deployment of wireless network and ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Agricultural Biological and Environmental Statistics

سال: 2021

ISSN: ['1085-7117', '1537-2693']

DOI: https://doi.org/10.1007/s13253-021-00438-2